[image: image1.jpg]



Bureau of Meteorology
Manager Factsheet
JavaScript

By: AccessibilityOz
Date: October 2012 

Contents
0Bureau of Meteorology Developer Factsheet JavaScript

Document History
1
Contents
1
Overview
3
JavaScript accessibility principles
3
Types of JavaScript functionality
3
Impact on users
4
JavaScript accessibility guidelines
5
Manager Checklist - JavaScript
6
Level A checklist
6
Level AA checklist
8
Level AAA checklist
8
Using automated testing tools
9
Introduction
9
Recommended tools
9
Testing JavaScript with the Web Developer Toolbar
9
Testing JavaScript with WAVE
9
Testing JavaScript with OzART
10
Resources
10
Accessibility
10
Tools
10
Further Information
12
AccessibilityOz
12



Overview
JavaScript accessibility principles

JavaScript accessibility is important to people with the following disabilities:

· Blindness;
· Low vision;
· Motor impairments; and
· Cognitive impairments.
Any of these groups of people may rely on assistive technology, such as a screen reader, a Braille reader, or a speaking browser. These technologies represent all information as structured text therefore all JavaScript functionality must take a form that can be interpreted as text.
These technologies are usually controlled with the keyboard, rather than with a mouse or pointing-device, and there are also many people who are simply unable to use a mouse or trackpad, because of a motor impairment. Therefore all interactive JavaScript functionality must be accessible to the keyboard, and controlled with common, intuitive keystrokes such as ‘TAB’, ‘Enter’, ‘Escape’ and arrow keys.
Accessibility principles specific to the use of JavaScript include, but are not limited to:

· All non-text content has a text equivalent
· Visual information should have a text equivalent.
· Interactive content should have a descriptive label.
· All functionality is operable with the keyboard
· Use the most device-independent event available.
· Pair mouse actions with equivalent keyboard actions.

· Information and structure can be programmatically determined
· Use standard DOM functions to create scripted content.

· Do not use scripting to emulate native functionality (such as using onclick on a SPAN instead a proper link href).

· Timed activity can be controlled
· Provide user control over time-limits.

· Provide a pause functionality for animated content.

· A logical focus order is always maintained
· Insert dynamic content into the DOM directly after its trigger.

· Add multiple interactive components in a logical order.

· Functionality that relies on JavaScript is not present without it

· Elements that only trigger scripting should themselves be added by scripting.

· Use progressive enhancement to trigger popups from normal links.

Types of JavaScript functionality

JavaScript functionality falls into three broad types:

· Binding functionality to existing interactive components, such as links, buttons and text fields. Assistive technologies can derive information from their attributes and text; for example, a dynamic menu would be made using links organised into nested lists, in which the menu levels are denoted by the hierarchy, and by the use of structural labels around each top-level link.


· Non-interactive functionality that presents information. This must be implemented in such a way that the information can be derived from associated text; for example, a visual progress-meter would also show a % figure, or JavaScript might be used to identify and highlight form validation errors.


· Creating custom components that are both interactive and informative. These components must be implemented using elements that are already understood by assistive technologies, so that their content and interactions can be programmatically determined; for example, a calendar widget would have a LABEL to describe it and a button to trigger it, while the calendar itself would be made using TABLE markup, which assistive technologies can understand and interpret as structured text.

Impact on users
The following is an overview of common JavaScript accessibility errors, and their impact on users with a disability:

· Non-text content which has no text-equivalent

· If visual information has no text equivalent, assistive technologies will not be able to relay that information to the user.

· If interactive components do not have a descriptive label, people who use assistive technologies, or who have a cognitive disability, may not understand what it is.


· Functionality which is not operable with the keyboard
· If interactive content can’t be operated with the keyboard, it will be entirely inaccessible to people who can’t use a mouse or pointing device.


· Information which can’t be programmatically determined
· If information is inserted using non-standard methods like innerHTML, it may not be programmatically available to assistive technologies, and therefore can't be relayed to the user.

· If scripting is used to implement standard functionality, assistive technologies will not understand what it is, and will therefore not be able to describe it or provide the appropriate keystrokes.

· If custom widgets are built using non-semantic markup, assistive technologies will similarly fail to understand what they are.


· Timed activity which can’t be controlled
· Some people take much longer than others to read content, either because of a cognitive disability, or because they can only focus on a few words at once, or because it takes longer to listen to synthesized speech than to visually read. It would be confusing and disorientating for people if content were to change while they were reading it.

· Continual animation or flickering effects may trigger a seizure in someone who has photosensitive epilepsy. It’s also more difficult for someone with a cognitive disability to ignore these effects, which makes the actual content harder to focus on.


· Failing to maintain a logical focus order
· Navigating with the keyboard is a one-dimensional process, and users who rely on speech output can only hear one thing at a time, so content which is not in a logical order is harder to comprehend and use. When a keyboard user presses a button and new interactive content appears, they’ll expect that content to be immediately next in the Tab order, not to have to jump around the page to get to it.


· Interactive content that can’t be used without JavaScript, which is present without it
· Selecting a link or button which then does nothing at all, is confusing and frustrating for any user, but particularly to someone who has a cognitive disability.
JavaScript accessibility guidelines
The Web Content Accessibility Guidelines 2.0 relevant to the accessibility of JavaScript include:-
	Guideline
	Description

	1.1
	Text Alternatives: Provide text alternatives for any non-text content so that it can be changed into other forms people need, such as large print, Braille, speech, symbols or simpler language.

	1.3
	Adaptable: Create content that can be presented in different ways (for example simpler layout) without losing information or structure.

	2.1
	Keyboard Accessible: Make all functionality available from a keyboard.

	2.2
	Enough Time: Provide users enough time to read and use content.

	2.4
	Navigable: Provide ways to help users navigate, find content, and determine where they are.

	3.2
	Predictable: Make Web pages appear and operate in predictable ways.

	3.3
	Input Assistance: Help users avoid and correct mistakes.


The relevant success criterion and appropriate techniques and common failures are detailed in the website developer factsheet.

Manager Checklist - JavaScript

Level A checklist

General Principles

	Ref
	Requirement
	Yes
	No

	JS_G_A1
	Does all dynamic visual information have a text equivalent (e.g. a visual progress-meter also shows a % figure)?
	
	

	JS_G_A2
	Does any JavaScript functionality that can't be made accessible have a long description that provides the same information (e.g. a graphical route-map is supplemented with a text description of the route)?
	
	

	JS_G_A3
	If any JavaScript functionality can't be presented in text, is it described and identified as such?
	
	

	JS_G_A4
	Is all functionality which relies on JavaScript hidden when JavaScript is unavailable?
	
	

	JS_G_A5
	Does all interactive content have an associated label or short instructions about its behaviour?
	
	

	JS_G_A6
	Is all JavaScript-generated content added using functions of the DOM, rather than using document.write or innerHTML?
	
	

	JS_G_A7
	Is everything that looks and functions like a link, actually a link, not just a JavaScript simulation?
	
	

	JS_G_A8
	Is there a mechanism for bypassing repeating blocks of content (e.g. site navigation has a button to expand and collapse it or a skip link)?
	
	


Interactive Content

	Ref
	Requirement
	Yes
	No

	JS_C_A1
	Is all interactive content accessible to the keyboard, using common keystrokes like ‘Tab’, ‘Enter’ and the Arrow Keys?
	
	

	JS_C_A2
	Is the click event used as the main activation event for on-demand functionality?
	
	

	JS_C_A3
	Is all mouse-controlled functionality also accessible to the keyboard, either by direct keyboard access to the same functionality, or by an alternative keyboard mechanism that achieves the same end-result?
	
	

	JS_C_A4
	Are all links, buttons and form fields accessible to the keyboard, and have visual indication when they're focused?
	
	

	JS_C_A5
	If a time-limit is in use, is the user warned when the limit is about to expire, and provided with a mechanism for extending it?
	
	

	JS_C_A6
	Does automatically-scrolling content have a mechanism to pause it?
	
	

	JS_C_A7
	Does automatically-scrolling content provide an alternative static version?
	
	

	JS_C_A8
	Does all blinking or flashing animation stop with 5 seconds?
	
	

	JS_C_A9
	When content is dynamically inserted into the DOM, is it next in the tab-order (i.e. directly after the element that triggered it, or which has the current focus)?
	
	

	JS_C_A10
	If custom dialogs are used (e.g. an image lightbox), can they be activated and closed again with only the keyboard, and are they inserted into the DOM directly after their triggering element?
	
	

	JS_C_A11
	If drag-and-drop is used, is it keyboard accessible, or is there a keyboard-based means of achieving the same end-result?
	
	

	JS_C_A12
	If custom dialogs are used (e.g. an image lightbox), are they triggered only by user request, using links that still function as normal links when JavaScript is unavailable?
	
	


Menus and Navigation

	Ref
	Requirement
	Yes
	No

	JS_N_A1
	If a dynamic menu is used, is it fully accessible to the keyboard using ‘Tab’ and/or Arrow Keys?
	
	

	JS_N_A2
	If new windows are opened, are they triggered only by activation events (i.e. selecting a link), not by focus or load events?
	
	

	JS_N_A3
	If new windows are opened, are they triggered only by user request, using links that still function as normal links when JavaScript is unavailable?
	
	

	JS_N_A4
	If a SELECT element is used for navigation, does it have a separate "Go" button that must be selected to load the new page, rather than loading as soon as an option is selected?
	
	

	JS_N_A5
	If automatic page redirections are used, are they implemented only with server-side scripting?
	
	

	JS_N_A6
	If automatic page refreshes are used, is a mechanism provided that gives the user control over this, and defaults to not refreshing at all?
	
	


Form Validation

	Ref
	Requirement
	Yes
	No

	JS_F_A1
	Is form validation triggered by submission of the form, not by individual field events?
	
	

	JS_F_A2
	Is form submission bound to the form's submit event, not to the submit button's click event?
	
	

	JS_F_A3
	Does form validation trigger an alert and then set focus on the first invalid field?
	
	

	JS_F_A4
	Are validation error messages inserted into the DOM directly after the field they relate to?
	
	

	JS_F_A5
	Is it possible to ‘Tab’ freely around a form without the focus being forced into invalid fields?
	
	


Level AA checklist

Form Validation

	Ref
	Requirement
	Yes
	No

	JS_F_AA1
	If form fields require a specific format or range of values, is contextual help-text available, either as help messages inserted into the DOM directly after the field they relate to or as default information in the field's LABEL or title attribute?
	
	


Using automated testing tools

Introduction

Automated testing tools are useful in assisting content managers and web developers with the identification of accessibility issues and errors of a website.

These tools are able to perform ‘machine-operable’ testing only, and should be used as a companion alongside human site review and testing.

The following testing tool information is provided as a guide only and is not an exhaustive list.

Recommended tools

The following testing tools are recommended as the most suitable, based on volume of pages being tested:

	Tool
	Volume of pages
	Type of tool

	Web Developer Toolbar
	Single pages.
	Free browser extension for Firefox or Chrome. 

	WAVE
	Single pages or small section of pages.
	Free online tool – can be used online or download the toolbar.

	OzArt
	Large section of pages or entire website.
	Online reporting tool – produces error category specific reports, reduces time spent manually inspecting single web pages.


NB: In some instances only one tool may be suitable regardless of the volume of pages to be tested. In addition, if no tool is suitable a manual site review will be required.

Testing JavaScript with the Web Developer Toolbar and WAVE
JavaScript can be turned off using the Web Developer Toolbar; however you will need WAVE to determine where the JavaScript has been used.
When the JavaScript features have been identified, JavaScript should be turned off and the page manually tested to determine whether it still functions correctly.
Testing JavaScript with OzART
The following tests can be checked automatically by OzART:

· JS_G_A7

· JS_C_A2

· JS_C_A4

All other instances of JavaScript need to be manually tested by disabling JavaScript using the Web Developer Toolbar. Pages that include a SCRIPT element are listed in the OzART SCRIPT report.
Resources

Accessibility

Disability Discrimination Act 1992

http://www.austlii.edu.au/au/legis/cth/consol_act/dda1992264/ 

A brief guide to the Disability Discrimination Act

(by the Australian Human Rights Commission)

http://www.humanrights.gov.au/disability_rights/dda_guide/dda_guide.htm
World Wide Web Access: Disability Discrimination Act Advisory Notes

(by the Australian Human Rights Commission)

http://www.hreoc.gov.au/disability_rights/standards/www_3/www_3.html


WCAG2 (W3C Web Content Accessibility Guidelines, Version 2.0)

http://www.w3.org/TR/WCAG20/
Web Accessibility National Transition Strategy

http://www.finance.gov.au/publications/wcag-2-implementation/index.html 
WebAIM – Web Accessibility In Mind
http://webaim.org/ 
Tools
Web Developer Toolbar by Chris Pederick
http://chrispederick.com/work/web-developer/
OzART

http://ozart.accessibilityoz.com.au 

WAVE

http://wave.webaim.org 

Colour contrast analysers
· http://www.paciellogroup.com/resources/contrast-analyser.html
· http://juicystudio.com/services/luminositycontrastratio.php
Further Information

AccessibilityOz
Web:

www.accessibilityoz.com.au
Phone:
03 9018 2281
Email: 
enquiries@accessibilityoz.com.au

 HYPERLINK "mailto:" 
Address: 
Level 2, 145 Flinders Lane, Melbourne 3000
AccessibilityOz








[image: image2.jpg]




www.accessibilityoz..com.au
BOM - Factsheet - JavaScript - Mgr - Final - 03
~ Page 7 ~

