[image: image1.jpg]

Bureau of Meteorology
Developer Factsheet
JavaScript

By: AccessibilityOz
Date: February 2013

Contents
0Bureau of Meteorology Developer Factsheet JavaScript

1Contents

2Overview

2JavaScript accessibility principles

2Types of JavaScript functionality

3Impact on users

5Developer Checklist - JavaScript

5Level A

10Level AA

11The Web Content Accessibility Guidelines (WCAG2)

11WCAG 2.0 Success Criteria

13WCAG 2.0 Sufficient Techniques

15WCAG 2.0 Common Failures

20Using automated testing tools

20Introduction

20Recommended tools

20Testing JavaScript with the Web Developer Toolbar and WAVE

20Testing JavaScript with OzART

21Resources

21Accessibility

21Tools

22Further Information

22AccessibilityOz

Overview
JavaScript accessibility principles

JavaScript accessibility is important to people with the following disabilities:

· Blindness;
· Low vision;
· Motor impairments; and
· Cognitive impairments.
Any of these groups of people may rely on assistive technology, such as a screen reader, a Braille reader, or a speaking browser. These technologies represent all information as structured text therefore all JavaScript functionality must take a form that can be interpreted as text.
These technologies are usually controlled with the keyboard, rather than with a mouse or pointing-device, and there are also many people who are simply unable to use a mouse or trackpad, because of a motor impairment. Therefore all interactive JavaScript functionality must be accessible to the keyboard, and controlled with common, intuitive keystrokes such as ‘TAB’, ‘Enter’, ‘Escape’ and arrow keys.

Accessibility principles specific to the use of JavaScript include, but are not limited to:

· All non-text content has a text equivalent
· Visual information should have a text equivalent.

· Interactive content should have a descriptive label.

· All functionality is operable with the keyboard
· Use the most device-independent event available.

· Pair mouse actions with equivalent keyboard actions.

· Information and structure can be programmatically determined
· Use standard DOM functions to create scripted content.

· Do not use scripting to emulate native functionality (such as using onclick on a SPAN instead a proper link href).

· Timed activity can be controlled
· Provide user control over time-limits.

· Provide a pause functionality for animated content.

· A logical focus order is always maintained
· Insert dynamic content into the DOM directly after its trigger.

· Add multiple interactive components in a logical order.

· Functionality that relies on JavaScript is not present without it
· Elements that only trigger scripting should themselves be added by scripting.

· Use progressive enhancement to trigger popups from normal links.

Types of JavaScript functionality

JavaScript functionality falls into three broad types:

· Binding functionality to existing interactive components, such as links, buttons and text fields. Assistive technologies can derive information from their attributes and text; for example, a dynamic menu would be made using links organised into nested lists, in which the menu levels are denoted by the hierarchy, and by the use of structural labels around each top-level link.

· Non-interactive functionality that presents information. This must be implemented in such a way that the information can be derived from associated text; for example, a visual progress-meter would also show a % figure, or JavaScript might be used to identify and highlight form validation errors.

· Creating custom components that are both interactive and informative. These components must be implemented using elements that are already understood by assistive technologies, so that their content and interactions can be programmatically determined; for example, a calendar widget would have a LABEL to describe it and a button to trigger it, while the calendar itself would be made using TABLE markup, which assistive technologies can understand and interpret as structured text.

Impact on users
The following is an overview of common JavaScript accessibility errors, and their impact on users with a disability:

· Non-text content which has no text-equivalent
· If visual information has no text equivalent, assistive technologies will not be able to relay that information to the user.

· If interactive components do not have a descriptive label, people who use assistive technologies, or who have a cognitive disability, may not understand what it is.

· Functionality which is not operable with the keyboard
· If interactive content can’t be operated with the keyboard, it will be entirely inaccessible to people who can’t use a mouse or pointing device.

· Information which can’t be programmatically determined
· If information is inserted using non-standard methods like innerHTML, it may not be programmatically available to assistive technologies, and therefore can't be relayed to the user.

· If scripting is used to implement standard functionality, assistive technologies will not understand what it is, and will therefore not be able to describe it or provide the appropriate keystrokes.

· If custom widgets are built using non-semantic markup, assistive technologies will similarly fail to understand what they are.

· Timed activity which can’t be controlled
· Some people take much longer than others to read content, either because of a cognitive disability, or because they can only focus on a few words at once, or because it takes longer to listen to synthesized speech than to visually read. It would be confusing and disorientating for people if content were to change while they were reading it.

· Continual animation or flickering effects may trigger a seizure in someone who has photosensitive epilepsy. It’s also more difficult for someone with a cognitive disability to ignore these effects, which makes the actual content harder to focus on.

· Failing to maintain a logical focus order
· Navigating with the keyboard is a one-dimensional process, and users who rely on speech output can only hear one thing at a time, so content which is not in a logical order is harder to comprehend and use. When a keyboard user presses a button and new interactive content appears, they’ll expect that content to be immediately next in the Tab order, not to have to jump around the page to get to it.

· Interactive content that can’t be used without JavaScript, which is present without it
· Selecting a link or button which then does nothing at all, is confusing and frustrating for any user, but particularly to someone who has a cognitive disability.

Developer Checklist - JavaScript
The following checklists are intended to guide developers on the implementation of success criteria for JavaScript, and are broadly grouped by the kind of functionality that each requirement relates to:

· General Principles

· Interactive Content (i.e., custom widgets, image viewers, maps, calendars etc.)
· Menus and Navigation

· Form Validation

· Audio and Video

The checklists should be used during the development phase to ensure WCAG 2.0 compliance of all JavaScript on the site, and should form part of the unit testing phase undergone by developers when updating or creating new content or functionality.

Level A

General Principles

	Ref
	Requirement
	Details
	Correct code
	Incorrect code
	Pass

	JS_G_A1
	All non-text content has an equivalent text alternative
	Visually-dynamic information (such as a progress meter) should have a text equivalent
	See Appendix JS_G_A1
	

	JS_G_A2
	
	Functionality that can't be made accessible must have a long description that provides the same information
	See Appendix JS_G_A2
	

	JS_G_A3
	
	Functionality that can't be presented in text must be descriptively identified
	See Appendix JS_G_A3
	

	JS_G_A4
	
	Functionality that relies on JavaScript should not be present when JavaScript is unavailable
	See Appendix JS_G_A4
	

	JS_G_A5
	Labels or instructions are provided when content requires user input
	Interactive content must have an associated label or short instructions about its behaviour
	See Appendix JS_G_A5
	

	JS_G_A6
	Information and structure can be programmatically determined
	Use functions of the DOM to add content to a page
	See Appendix JS_G_A6
	

	JS_G_A7
	
	Do not use events to emulate the behaviour of links
	
	
	
	
	

	JS_G_A8
	Blocks of repeating content can be bypassed
	Use an expandable/collapsible menu to bypass blocks of content
	See Appendix JS_G_A8
	

Interactive Content

	Ref
	Requirement
	Details
	Correct code
	Incorrect code
	Pass

	JS_C_A1
	All functionality is operable through a keyboard interface
	Interactive content should be accessible to the keyboard, using common keystrokes like ‘Tab’, ‘Enter’ and Arrow Keys
	See Appendix JS_C_A1
	

	JS_C_A2
	
	Use the click event of links and buttons as an activation event
	See Appendix JS_C_A2
	
	<input type="button" value="Compute Monthly Pay” onkeypress="compute()">
	

	JS_C_A3
	
	Mouse actions must be paired with equivalent keyboard actions
	See Appendix JS_C_A3
	

	JS_C_A4
	
	Do not use events to restrict keyboard access or remove focus indication
	
	N/A
	
	onfocus="this.blur()"
	

	JS_C_A5
	Timed activity can be controlled
	Warn the user when a time-limit is about to expire, and provide a mechanism for extending it
	See Appendix JS_C_A5
	

	JS_C_A6
	
	Use scripting to scroll content and provide a mechanism to pause it
	See Appendix JS_C_A6-A7
	

	JS_C_A7
	
	Use scripting to create an alternative, static version of scrolling content
	See Appendix JS_C_A6-A7
	

	JS_C_A8
	
	Use scripting to create a blinking animation that stops in 5 seconds
	See Appendix JS_C_A8
	

	JS_C_A9
	Maintain a logical focus order for interactive components
	Insert dynamic content into the DOM immediately following its trigger element
	See Appendix JS_C_A9
	

	JS_C_A10
	
	Create custom dialogs in a device independent way
	See Appendix JS_C_A10-A12
	

	JS_C_A11
	
	Use scripting to re-order content in the DOM
	See Appendix JS_C_A11
	

	JS_C_A12
	Changes of context are only initiated by user request or with user control
	Use progressive enhancement to open custom dialogs on user request
	See Appendix JS_C_A10-A12
	

Menus and Navigation

	Ref
	Requirement
	Details
	Correct code
	Incorrect code
	Pass

	JS_N_A1
	All functionality is operable through a keyboard interface
	Dynamic menus should be fully accessible to the keyboard, using ‘Tab’ and Arrow Keys
	See Appendix JS_N_A1
	

	JS_N_A2
	Changes of context are only initiated by user request or with user control
	Use an actuation event, rather than focus or load event, to programmatically open links or trigger popup windows
	See Appendix JS_N_A2
	

	JS_N_A3
	
	Use progressive enhancement to open windows on user request
	See Appendix JS_N_A3
	

	JS_N_A4
	
	Do not use the change event of a SELECT element for navigation
	See Appendix JS_N_A4
	

	JS_N_A5
	
	Do not automatically redirect the page using JavaScript
	See Appendix JS_N_A5
	

	JS_N_A6
	
	Do not automatically refresh the page without user confirmation or control
	See Appendix JS_N_A6
	

Form Validation

	Ref
	Requirement
	Details
	Correct code
	Incorrect code
	Pass

	JS_F_A1
	If an input error is detected, the field should be identified and the error described in text
	Form validation should be triggered by submission, rather than individual field events
	See Appendix JS_F_A1-A3-A4
	

	JS_F_A2
	
	Form submission should be bound to the form's submit event, not to the submit button's click event
	
	<form action="/search" onsubmit="return validate(this)">
	
	<input type="submit" onclick="return validate(this)">
	

	JS_F_A3
	
	Form validation should trigger an alert then set focus on the first invalid field
	See Appendix JS_F_A1-A3-A4
	

	JS_F_A4
	
	Validation error messages should be programmatically inserted directly after the field they relate to, using functions of the DOM
	See Appendix JS_F_A1-A3-A4
	

	JS_F_A5
	
	Do not force the focus to remain in invalid fields
	See Appendix JS_F_A5
	

Level AA

Form Validation

	Ref
	Requirement
	Details
	Correct code
	Incorrect code
	Pass

	JS_F_AA1
	If an input error is detected, and suggestions for corrections are known, these can be provided in text
	Where form fields require a specific format or range of values, contextual help-text can be programmatically inserted directly after the field it relates to, using functions of the DOM
	See Appendix JS_F_AA1
	

The Web Content Accessibility Guidelines (WCAG2)

WCAG 2.0 Success Criteria

The Web Content Accessibility Guidelines Success Criteria relevant to the accessibility of JavaScript are:-

	SC
	Description

	1.1.1
	Non-text Content: All non-text content that is presented to the user has a text alternative that serves the equivalent purpose, except for the situations listed below. (Level A)
· Controls, Input: If non-text content is a control or accepts user input, then it has a name that describes its purpose.

· Tests, Games: If non-text content is a test, exercise or game that would be invalid if presented in text, then text alternatives at least provide descriptive identification of the non-text content.
· Sensory: If non-text content is primarily intended to create a specific sensory experience, then text alternatives at least provide descriptive identification of the non-text content.

	1.3.1
	Info and Relationships: Information, structure, and relationships conveyed through presentation can be programmatically determined or are available in text. (Level A)

	2.1.1
	Keyboard: All functionality of the content is operable through a keyboard interface without requiring specific timings for individual keystrokes, except where the underlying function requires input that depends on the path of the user's movement and not just the endpoints. (Level A)

Note: This exception relates to the underlying function, not the input technique. For example, if using handwriting to enter text, the input technique (handwriting) requires path-dependent input but the underlying function (text input) does not.

Note: This does not forbid and should not discourage providing mouse input or other input methods in addition to keyboard operation.

	2.1.2
	No Keyboard Trap: If keyboard focus can be moved to a component of the page using a keyboard interface, then focus can be moved away from that component using only a keyboard interface, and, if it requires more than unmodified arrow or tab keys or other standard exit methods, the user is advised of the method for moving focus away. (Level A)

	2.2.1
	Timing Adjustable: For each time limit that is set by the content, at least one of the following is true: (Level A)
· Turn off: The user is allowed to turn off the time limit before encountering it; or

· Adjust: The user is allowed to adjust the time limit before encountering it over a wide range that is at least ten times the length of the default setting; or

· Extend: The user is warned before time expires and given at least 20 seconds to extend the time limit with a simple action (for example, "press the space bar"), and the user is allowed to extend the time limit at least ten times; or

· Real-time Exception: The time limit is a required part of a real-time event (for example, an auction), and no alternative to the time limit is possible; or

· Essential Exception: The time limit is essential and extending it would invalidate the activity; or

· 20 Hour Exception: The time limit is longer than 20 hours.

Note: This success criterion helps ensure that users can complete tasks without unexpected changes in content or context that are a result of a time limit.

	2.2.2
	Pause, Stop, Hide: For moving, blinking, scrolling, or auto-updating information, all of the following are true: (Level A)
· Moving, blinking, scrolling: For any moving, blinking or scrolling information that (1) starts automatically, (2) lasts more than five seconds, and (3) is presented in parallel with other content, there is a mechanism for the user to pause, stop, or hide it unless the movement, blinking, or scrolling is part of an activity where it is essential; and

· Auto-updating: For any auto-updating information that (1) starts automatically and (2) is presented in parallel with other content, there is a mechanism for the user to pause, stop, or hide it or to control the frequency of the update unless the auto-updating is part of an activity where it is essential.

Note: Content that is updated periodically by software or that is streamed to the user agent is not required to preserve or present information that is generated or received between the initiation of the pause and resuming presentation, as this may not be technically possible, and in many situations could be misleading to do so.
Note: An animation that occurs as part of a preload phase or similar situation can be considered essential if interaction cannot occur during that phase for all users and if not indicating progress could confuse users or cause them to think that content was frozen or broken.

	2.4.1
	Bypass Blocks: A mechanism is available to bypass blocks of content that appear on multiple Web pages. (Level A)

	2.4.3
	Focus Order: If a Web page can be navigated sequentially and the navigation sequences affect meaning or operation, focusable components receive focus in an order that preserves meaning and operability. (Level A)

	3.2.1
	On Focus: When any component receives focus, it does not initiate a change of context. (Level A)

	3.2.2
	On Input: Changing the setting of any user interface component does not automatically cause a change of context unless the user has been advised of the behaviour before using the component. (Level A)

	3.3.1
	Error Identification: If an input error is automatically detected, the item that is in error is identified and the error is described to the user in text. (Level A)

	3.3.2
	Labels or Instructions: Labels or instructions are provided when content requires user input. (Level A)

	3.3.3
	Error Suggestion: If an input error is automatically detected and suggestions for correction are known, then the suggestions are provided to the user, unless it would jeopardize the security or purpose of the content. (Level AA)

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

The relevant guidelines are detailed in the website manager factsheet.

WCAG 2.0 Sufficient Techniques

For each of the guidelines and success criteria in WCAG 2.0 there are a wide variety of techniques. The techniques fall into two categories:
Sufficient techniques – techniques or a combination of techniques that are sufficient for meeting the success criteria.
Advisory techniques – techniques that should be considered (where relevant) to make content more accessible. The advisory techniques go beyond what is required by the individual success criteria and are not covered by these factsheets.
	SC
	Description

	1.1.1
	Situation A: If a short description can serve the same purpose and present the same information as the non-text content (e.g., a progress meter):

· G94: Providing short text alternative for non-text content that serves the same purpose and presents the same information as the non-text content

Situation B: If a short description can not serve the same purpose and present the same information as the non-text content (e.g., a calendar or map):

· G95: Providing short text alternatives that provide a brief description of the non-text content AND one of the following techniques for long description:

· G74: Providing a long description in text near the non-text content, with a reference to the location of the long description in the short description

· G73: Providing a long description in another location with a link to it that is immediately adjacent to the non-text content

Situation C: If non-text content is a control or accepts user input (e.g., a slider widget):

· G82: Providing a short text alternative that identifies the purpose of the non-text content

Situation D: If non-text content is a test, game or exercise that would be invalid if presented in text:

· G100: Providing a short text alternative which is the accepted name or a descriptive name of the non-text content

	1.3.1
	Situation A: The technology provides semantic structure to make information and relationships conveyed through presentation programmatically determinable:

· Making information and relationships conveyed through presentation programmatically determinable using the following techniques:

· SCR21: Using functions of the Document Object Model (DOM) to add content to a page

	2.1.1
	G90: Providing keyboard-triggered event handlers using one of the following techniques:

· SCR20: Using both keyboard and other device-specific functions

· SCR35: Making actions keyboard accessible by using the onclick event of anchors and buttons

· SCR2: Using redundant keyboard and mouse event handlers

	2.1.2
	G21: Ensuring that users are not trapped in content

	2.2.1
	Situation A: If a time limit is controlled by a script on the page:

· SCR16: Providing a script that warns the user a time limit is about to expire AND SCR1: Allowing the user to extend the default time limit
Situation B: If there are time limits on reading:

· SCR33: Using script to scroll content, and providing a mechanism to pause it

· SCR36: Providing a mechanism to allow users to display moving, scrolling, or auto-updating text in a static window or area

	2.2.2
	· SCR33: Using script to scroll content, and providing a mechanism to pause it

· SCR22: Using scripts to control blinking and stop it in five seconds or less

	2.4.1
	Grouping blocks of repeated material in a way that can be skipped, using one of the following technique:

· SCR28: Using an expandable and collapsible menu to bypass block of content

	2.4.3
	Changing a Web page dynamically using one of the following techniques:

· SCR26: Inserting dynamic content into the Document Object Model immediately following its trigger element
· SCR37: Creating Custom Dialogs in a Device Independent Way
· SCR27: Reordering page sections using the Document Object Model

	3.2.1
	G107: Using "activate" rather than "focus" as a trigger for changes of context

	3.2.2
	SCR19: Using an onchange event on a select element without causing a change of context

	3.3.1
	Situation A: If a form contains fields for which information from the user is mandatory.

· SCR18: Providing client-side validation and alert
Situation B: If information provided by the user is required to be in a specific data format or of certain values.

· SCR18: Providing client-side validation and alert

· SCR32: Providing client-side validation and adding error text via the DOM

	3.3.2
	G131: Providing descriptive labels AND one of the following:

· G89: Providing expected data format and example

· G184: Providing text instructions at the beginning of a form or set of fields that describes the necessary input

· G162: Positioning labels to maximize predictability of relationships

· G83: Providing text descriptions to identify required fields that were not completed

	3.3.3
	Situation A: If information for a field is required to be in a specific data format:

· SCR18: Providing client-side validation and alert
· SCR32: Providing client-side validation and adding error text via the DOM

Situation B: Information provided by the user is required to be one of a limited set of values:

· SCR18: Providing client-side validation and alert
· SCR32: Providing client-side validation and adding error text via the DOM

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

WCAG 2.0 Common Failures

SC 1.1.1 Non-text Content
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/text-equiv-all.html)
The following are common mistakes that are considered failures of Success Criterion 1.1.1 by the WCAG Working Group.

	Failure
	Description

	F30
	Failure of Success Criterion 1.1.1 due to using text alternatives that are not alternatives

	F20
	Failure of Success Criterion 1.1.1 due to not updating text alternatives when changes to non-text content occur

	F67
	Failure of Success Criterion 1.1.1 due to providing long descriptions for non-text content that does not serve the same purpose or does not present the same information

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 1.3.1 Info and Relationships
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html)
The following are common mistakes that are considered failures of Success Criterion 1.3.1 by the WCAG Working Group.
	Failure
	Description

	F17
	Failure of Success Criterion 1.3.1 due to insufficient information in DOM to determine one-to-one relationships (e.g., between labels with same id) in HTML

	F42
	Failure of Success Criteria 1.3.1 and 2.1.1 due to using scripting events to emulate links in a way that is not programmatically determinable

	F43
	Failure of Success Criterion 1.3.1 due to using structural markup in a way that does not represent relationships in the content

	F68
	Failure of Success Criteria 1.3.1 and 4.1.2 due to the association of label and user interface controls not being programmatically determinable

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 2.1.1 Keyboard
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html)

The following are common mistakes that are considered failures of Success Criterion 2.1.1 by the WCAG Working Group.
	Failure
	Description

	F54
	Failure of Success Criterion 2.1.1 due to using only pointing-device-specific event handlers (including gesture) for a function

	F55
	Failure of Success Criteria 2.1.1 and 3.2.1 due to using script to remove focus when focus is received

	F42
	Failure of Success Criteria 1.3.1 and 2.1.1 due to using scripting events to emulate links in a way that is not programmatically determinable

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 2.1.2 No Keyboard Trap
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-trapping.html)

There are no common failures currently documented in WCAG2.0.
Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]
SC 2.2.1 Timing Adjustable
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/time-limits-required-behaviors.html)

The following are common mistakes that are considered failures of Success Criterion 2.2.1 by the WCAG Working Group.
	Failure
	Description

	F40
	Failure of Success Criterion 2.2.1 due to using meta redirect with a time limit

	F41
	Failure of Success Criteria 2.2.1 and 3.2.5 due to using meta refresh with a time-out

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 2.2.2 Pause, Stop, Hide
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/time-limits-pause.html)

The following are common mistakes that are considered failures of Success Criterion 2.2.2 by the WCAG Working Group.
	Failure
	Description

	F16
	Failure of Success Criterion 2.2.2 due to including scrolling content where movement is not essential to the activity without also including a mechanism to pause and restart the content

	F50
	Failure of Success Criterion 2.2.2 due to a script that causes a blink effect without a mechanism to stop the blinking at 5 seconds or less

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 2.4.1 Bypass Blocks
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-skip.html)

There are no common failures currently documented in WCAG2.0.
Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]
SC 2.4.3 Focus Order
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html)

The following are common mistakes that are considered failures of Success Criterion 2.4.3 by the WCAG Working Group.
	Failure
	Description

	F85
	Failure of Success Criterion 2.4.3 due to using dialogs or menus that are not adjacent to their trigger control in the sequential navigation order

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 3.2.1 On Focus
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/consistent-behavior-receive-focus.html)

The following are common mistakes that are considered failures of Success Criterion 3.2.1 by the WCAG Working Group.
	Failure
	Description

	F52
	Failure of Success Criteria 3.2.1 and 3.2.5 due to opening a new window as soon as a new page is loaded

	F55
	Failure of Success Criteria 2.1.1 and 3.2.1 due to using script to remove focus when focus is received

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 3.2.2 On Input
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/consistent-behavior-unpredictable-change.html)

The following are common mistakes that are considered failures of Success Criterion 3.2.2 by the WCAG Working Group.
	Failure
	Description

	F36
	Failure of Success Criterion 3.2.2 due to automatically submitting a form and presenting new content without prior warning when the last field in the form is given a value

	F37
	Failure of Success Criterion 3.2.2 due to launching a new window without prior warning when the status of a radio button, check box or select list is changed

	F76
	Failure of Success Criterion 3.2.2 due to providing instruction material about the change of context by change of setting in a user interface element at a location that users may bypass

Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]

SC 3.3.1 Error Identification
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/minimize-error-identified.html)

There are no common failures currently documented in WCAG2.0.
Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]
SC 3.3.2 Labels or Instructions
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/minimize-error-cues.html)

There are no common failures currently documented in WCAG2.0.
Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]
SC 3.3.3 Error Suggestion
(http://www.w3.org/TR/UNDERSTANDING-WCAG20/minimize-error-suggestions.html)

There are no common failures currently documented in WCAG2.0.
Copyright © W3C 11 December 2008 World Wide Web Consortium [Status: Recommendation]
Using automated testing tools

Introduction

Automated testing tools are useful in assisting content managers and web developers with the identification of accessibility issues and errors of a website.

These tools are able to perform ‘machine-operable’ testing only, and should be used as a companion alongside human site review and testing.

The following testing tool information is provided as a guide only and is not an exhaustive list.

Recommended tools

The following testing tools are recommended as the most suitable, based on volume of pages being tested:

	Tool
	Volume of pages
	Type of tool

	Web Developer Toolbar
	Single pages.
	Free browser extension for Firefox or Chrome.

	WAVE
	Single pages or small section of pages.
	Free online tool – can be used online or download the toolbar.

	OzArt
	Large section of pages or entire website.
	Online reporting tool – produces error category specific reports, reduces time spent manually inspecting single web pages.

NB: In some instances only one tool may be suitable regardless of the volume of pages to be tested. In addition, if no tool is suitable a manual site review will be required.

Testing JavaScript with the Web Developer Toolbar and WAVE
JavaScript can be turned off using the Web Developer Toolbar; however you will need WAVE to determine where the JavaScript has been used.

When the JavaScript features have been identified, JavaScript should be turned off and the page manually tested to determine whether it still functions correctly.
Testing JavaScript with OzART
The following tests can be checked automatically by OzART:

· JS_G_A7

· JS_C_A2

· JS_C_A4

All other instances of JavaScript need to be manually tested by disabling JavaScript using the Web Developer Toolbar. Pages that include a SCRIPT element are listed in the OzART SCRIPT report.
Resources

Accessibility

Disability Discrimination Act 1992

http://www.austlii.edu.au/au/legis/cth/consol_act/dda1992264/

A brief guide to the Disability Discrimination Act

(by the Australian Human Rights Commission)

http://www.humanrights.gov.au/disability_rights/dda_guide/dda_guide.htm
World Wide Web Access: Disability Discrimination Act Advisory Notes

(by the Australian Human Rights Commission)

http://www.hreoc.gov.au/disability_rights/standards/www_3/www_3.html

WCAG2 (W3C Web Content Accessibility Guidelines, Version 2.0)

http://www.w3.org/TR/WCAG20/
Web Accessibility National Transition Strategy

http://www.finance.gov.au/publications/wcag-2-implementation/index.html
WebAIM – Web Accessibility In Mind
http://webaim.org/
Tools
Web Developer Toolbar by Chris Pederick
http://chrispederick.com/work/web-developer/
OzART

http://ozart.accessibilityoz.com.au

WAVE

http://wave.webaim.org

Colour contrast analysers
· http://www.paciellogroup.com/resources/contrast-analyser.html
· http://juicystudio.com/services/luminositycontrastratio.php
Further Information

AccessibilityOz
Web:

www.accessibilityoz.com.au
Phone:
03 9018 2281
Email:
enquiries@accessibilityoz.com.au

 HYPERLINK "mailto:"
Address:
Level 2, 145 Flinders Lane, Melbourne 3000
AccessibilityOz

[image: image2.jpg]

www.accessibilityoz..com.au
BOM - Factsheet - JavaScript - Dev - JE - 18 - InProgress
~ Page 1 ~

